RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A straightforward approach for coping with unreliability of person means when parsing within-person and between-person effects in longitudinal studies
Gottfredson, N. C. (2019). A straightforward approach for coping with unreliability of person means when parsing within-person and between-person effects in longitudinal studies. Addictive Behaviors, 94, 156-161. https://doi.org/10.1016/j.addbeh.2018.09.031
Longitudinal studies enable researchers to distinguish within-person (i.e., time-varying) from between-person (i.e., time invariant) effects by using the person mean to model between-person effects and person-mean centering to model within-person effects using multilevel models (MLM). However, with some exceptions, the person mean tends to be based on a relatively small number of observations available for each participant in longitudinal studies. Unreliability inherent in person means generated with few observations results in downwardly biased between-person and cross-level interaction effect estimates. This manuscript considers a simple, easy-to-implement, post-hoc bias adjustment to correct for attenuation of between-person effects caused by unreliability of the person mean. This correction can be applied directly to estimates obtained from MLM. We illustrate this method using data from a panel study predicting adolescent alcohol involvement from perceived parental monitoring, where parental monitoring was disaggregated into within-person (i.e., person-mean-centered) and between-person (i.e., person-mean) components. We then describe results of a small simulation study that evaluated the performance of the post-hoc adjustment under data conditions that mirrored those of the empirical example. Results suggested that, under a condition in which parameter bias is known to be problematic (i.e., moderate ICCx, small n, presence of a compositional effect), it is preferable to use the bias-adjusted MLM estimates over the unadjusted MLM estimates for between-person and cross-level interaction effects.