RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Spatial distribution of ammonia concentrations and modeled dry deposition in an intensive dairy production region
Leytem, A. B., Walker, J. T., Wu, Z., Nouwakpo, K., Baublitz, C., Bash, J., & Beachley, G. (2024). Spatial distribution of ammonia concentrations and modeled dry deposition in an intensive dairy production region. ATMOSPHERE, 15(1), Article 15. https://doi.org/10.3390/atmos15010015
Agriculture generates similar to 83% of total US ammonia (NH3) emissions, potentially adversely impacting sensitive ecosystems through wet and dry deposition. Regions with intense livestock production, such as the dairy region of south-central Idaho, generate hotspots of NH3 emissions. Our objective was to measure the spatial and temporal variability of NH3 across this region and estimate its dry deposition. Ambient NH3 was measured using diffusive passive samplers at 8 sites in two transects across the region from 2018-2020. NH3 fluxes were estimated using the Surface Tiled Aerosol and Gaseous Exchange (STAGE) model. Peak NH3 concentrations were 4-5 times greater at a high-density dairy site compared to mixed agriculture/dairy or agricultural sites, and 26 times greater than non-agricultural sites with prominent seasonal trends driven by temperature. Annual estimated dry deposition rates in areas of intensive dairy production can approach 45 kg N ha(-1) y(-1), compared to <1 kg N ha(-1) y(-1) in natural landscapes. Our results suggest that the natural sagebrush steppe landscapes interspersed within and surrounding agricultural areas in southern Idaho receive NH3 dry deposition rates within and above the range of nitrogen critical loads for North American deserts. Finally, our results highlight a need for improved understanding of the role of soil processes in NH3 dry deposition to arid and sparsely vegetated natural ecosystems across the western US.