RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Simulation of the direct methanol fuel cell - I. Thermodynamic framework for a multicomponent membrane
Meyers, JP., & Newman, J. (2002). Simulation of the direct methanol fuel cell - I. Thermodynamic framework for a multicomponent membrane. Journal of the Electrochemical Society, 149(6), A710-A717.
A theoretical framework that describes the equilibrium of species in a multicomponent membrane is presented. This framework considers explicitly first-order nonidealities that describe the interactions between pairs of species in a multicomponent membrane (e. g., Nafion). These binary interaction parameters are fit to methanol and water uptake data for liquid methanol solutions. A chemical model is combined with this framework to describe uptake of water vapor by the membrane over the entire range of relative humidity. The framework established here provides a means to describe the gradients in electrochemical potential for species in the membrane when describing the driving forces for multicomponent transport in a second companion paper. This paper describes equilibrium conditions; the second paper considers nonequilibrium conditions (transport and reaction kinetics). The modeling aspects are combined in a third paper to simulate the direct methanol fuel cell and quantify aspects of its design. (C) 2002 The Electrochemical Society