RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Sample size considerations in prevention research applications of multilevel modeling and structural equation modeling
Hoyle, R. H., & Gottfredson, N. C. (2015). Sample size considerations in prevention research applications of multilevel modeling and structural equation modeling. Prevention Science, 16(7), 987-996. https://doi.org/10.1007/s11121-014-0489-8
When the goal of prevention research is to capture in statistical models some measure of the dynamic complexity in structures and processes implicated in problem behavior and its prevention, approaches such as multilevel modeling (MLM) and structural equation modeling (SEM) are indicated. Yet the assumptions that must be satisfied if these approaches are to be used responsibly raise concerns regarding their use in prevention research involving smaller samples. In this article, we discuss in nontechnical terms the role of sample size in MLM and SEM and present findings from the latest simulation work on the performance of each approach at sample sizes typical of prevention research. For each statistical approach, we draw from extant simulation studies to establish lower bounds for sample size (e.g., MLM can be applied with as few as ten groups comprising ten members with normally distributed data, restricted maximum likelihood estimation, and a focus on fixed effects; sample sizes as small as N = 50 can produce reliable SEM results with normally distributed data and at least three reliable indicators per factor) and suggest strategies for making the best use of the modeling approach when N is near the lower bound.