RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A role for surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity
Warheit, DB., Reed, KL., & Sayes, C. (2009). A role for surface reactivity in TiO2 and quartz-related nanoparticle pulmonary toxicity. Nanotoxicology, 3(3), 181-187. https://doi.org/10.1080/17435390902725930
A variety of pulmonary hazard studies in rats have demonstrated that exposures to ultrafine or nanoparticles (generally defined as particles in the size range < 100 nm) produce more intensive inflammatory responses when compared with bulk-sized particle-types of similar chemical composition. However, this common perception of greater nanoparticle toxicity is based on a limited number of studies, conducted primarily with titanium dioxide and carbon black particle-types. Apart from variables such as particle size and surface area, it is conceivable that several additional physicochemical particle characteristics could play more significant roles in facilitating the development of nanoparticle-related toxicity; particularly when considering particle surface-cell interactions. These include but are not limited to: (i) Surface reactivity of particle-types; (ii) surface coatings; (iii) aggregation/disaggregation potential; and (iv) the method of nanoparticle synthesis. We present results of pulmonary bioassay hazard/safety studies with quartz particles of varying sizes/surface areas. These demonstrated that intratracheal instillation exposures to fine-sized, Min-U-Sil quartz particles (0.5 µm [particle size] – 5 m2/g [surface area]) produced (persistent) enhanced pulmonary toxicity (inflammation, cytotoxicity, cell proliferation and/or histopathology) in rats when compared to nanoscale quartz particles (50 nm–31 m2/g), but not when compared to smaller nanoscale quartz sizes (e.g., 12 nm–91 m2/g). The toxicity results correlated with red blood cell hemolytic potency as a measure of particle surface reactivity. In a second pulmonary bioassay study in rats, pulmonary hazard effects were measured following exposures to three different ultrafine (nano) TiO2 particle-types, each with similar particle size distributions. The various TiO2 particles differed in their crystal structures and surface reactivity endpoints as measured by the Vitamin C yellowing assay. Moreover, the surface activity characteristics correlated with potency of hazard biomarkers as described above, in these dose/response, time-course studies. It is concluded that particle surface reactivity, rather than particle size/surface area endpoints correlated best with lung inflammatory potency following exposures to particles.