RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
The reproductive and developmental toxicity of the antifungal drug Nyotran((R)) (liposomal nystatin) in rats and rabbits
Larson, JL., Wallace, TL., Tyl, R., Marr, M., Myers, C., & Cossum, PA. (2000). The reproductive and developmental toxicity of the antifungal drug Nyotran((R)) (liposomal nystatin) in rats and rabbits. Toxicological Sciences, 53(2), 421-429. https://doi.org/10.1093/toxsci/53.2.421
Nyotran is a liposomally encapsulated i.v. formulation of the antifungal polyene nystatin. This drug was evaluated in a series of reproductive toxicity studies, according to the guidelines outlined by the International Conference on Harmonization (ICH). A fertility and early embryonic development study (SEG I) and a prenatal and postnatal development (SEG III) study were conducted in rats, and embryo-fetal development (SEG II) studies were conducted in rats and rabbits. Nyotran was administered iv in all studies. In SEG I and SEG III, rats were administered daily doses of 0.5, 1.5, or 3.0 mg/kg Nyotran. In both studies, parental mortality and toxicity in the 3.0 mg/kg dose group necessitated the lowering of the high dose to 2.0 mg/kg/day. Parental toxicity, in the form of decreased body weights, decreased food consumption, and piloerection were also observed at the 1.5 mg/kg/day dose level in the SEG I and SEG III studies. Despite the parentally toxic doses in the SEG I study, there was no effect of Nyotran on F0 male or female fertility or early embryonic development of F1 offspring. In the SEG III study, lactational body weights of the F1 generation were decreased at all Nyotran dose levels. There was no effect on pre-wean developmental landmarks, but post-wean development was affected by Nyotran administration at all dosage levels. Preputional separation was delayed in the 1.5 and 3.0/2.0 mg/kg/day F1 offspring, auditory startle function was decreased in F1 females at all dose levels, and motor activity was decreased in male F1 offspring at all dose levels. However, there were no treatment-related effects on the subsequent mating of the F1 generation and resulting F2 offspring. In SEG II studies, rats and rabbits were also administered 0.5, 1.5, or 3.0 mg/kg/day of Nyotran during gestation. The high dose in these SEG II studies was not lowered, as the maternal animals were able to tolerate the shorter duration of dosing. Maternal effects in rabbits were observed only in the high-dose group and were limited to decreased food consumption and decreased absolute and relative liver weight. Decreased food consumption in high-dose dams and clinical weight loss in some animals at the mid- and high-dose levels evidenced maternal toxicity in rats. Nyotran did not have any effect on Caesarian section parameters in either rats or rabbits and no effect on the incidence of fetal malformations in rabbits. A statistically significant increase in mild hydrocephaly, observed in 4 rat fetuses, was seen at the highest dose level of 3.0 mg/kg/day. The biological significance and relationship to Nyotran treatment of this finding is not clear. This finding may represent a change in the background incidence or a change in the pattern of responsiveness of this strain of rat fetus to the test chemical. Toxicokinetic data were also collected in the SEG II rabbit and rat studies for comparison to human exposures. In both species, systemic exposure to the nystatin at effective antifungal concentrations was demonstrated. The systemic exposures in rats and rabbits were, however, considerably less than have been reported in humans administered clinical doses of 2 or 4 mg/kg/day Nyotran. Thus, humans tolerate higher dosages and systemic exposures of Nyotran relative to rats and rabbits and there is no margin of safety in either dosage level or systemic exposure to drug. Given this lack of a margin of safety and the effects on postnatal development in F1 rats, caution should be exercised when using this drug in females of childbearing potential.