RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
In a rat model of opioid maintenance, the G protein-biased mu opioid receptor agonist TRV130 decreases relapse to oxycodone seeking and taking and prevents oxycodone-induced brain hypoxia
Bossert, J. M., Kiyatkin, E. A., Korah, H., Hoots, J. K., Afzal, A., Perekopskiy, D., Thomas, S., Fredriksson, I., Blough, B. E., Negus, S. S., Epstein, D. H., & Shaham, Y. (2020). In a rat model of opioid maintenance, the G protein-biased mu opioid receptor agonist TRV130 decreases relapse to oxycodone seeking and taking and prevents oxycodone-induced brain hypoxia. Biological Psychiatry, 88(12), 935-944. https://doi.org/10.1016/j.biopsych.2020.02.014
BACKGROUND: Maintenance treatment with opioid agonists (buprenorphine, methadone) is effective for opioid addiction but does not eliminate opioid use in all patients. We modeled maintenance treatment in rats that self-administered the prescription opioid oxycodone. The maintenance medication was either buprenorphine or the G protein-biased mu opioid receptor agonist TRV130. We then tested prevention of oxycodone seeking and taking during abstinence using a modified context-induced reinstatement procedure, a rat relapse model.
METHODS: We trained rats to self-administer oxycodone (6 hours/day, 14 days) in context A; infusions were paired with discrete tone-light cues. We then implanted osmotic pumps containing buprenorphine or TRV130 (0, 3, 6, or 9 mg/kg/day) and performed 3 consecutive tests: lever pressing reinforced by oxycodone-associated discrete cues in nondrug context B (extinction responding), context-induced reinstatement of oxycodone seeking in context A, and reacquisition of oxycodone self-administration in context A. We also tested whether TRV130 maintenance would protect against acute oxycodone-induced decreases in nucleus accumbens oxygen levels.
RESULTS: In male rats, buprenorphine and TRV130 decreased extinction responding and reacquisition of oxycodone self-administration but had a weaker (nonsignificant) effect on context-induced reinstatement. In female rats, buprenorphine decreased responding in all 3 tests, while TRV130 decreased only extinction responding. In both sexes, TRV130 prevented acute brain hypoxia induced by moderate doses of oxycodone.
CONCLUSIONS: TRV130 decreased oxycodone seeking and taking during abstinence in a partly sex-specific manner and prevented acute oxycodone-induced brain hypoxia. We propose that G protein-biased mu opioid receptor agonists, currently in development as analgesics, should be considered as relapse prevention maintenance treatment for opioid addiction.