RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Optimization of lithium titanate electrodes for high-power cells
Christensen, J., Srinivasan, V., & Newman, J. (2006). Optimization of lithium titanate electrodes for high-power cells. Journal of the Electrochemical Society, 153(3), A560-A565.
A full-cell mathematical model is used to compare the performance of graphite (LixC6) and lithium titanate (Li4+3xTi5O12) negative electrodes, with a doped lithium manganese oxide (Liy+0.16Mn1.84O4) positive electrode. The cell designs are optimized over electrode thickness and porosity, and several particle sizes are examined for the lithium titanate/manganese oxide system. Although the graphite-based cell contains a higher specific energy than the titanate-based cell, the latter performs better at high rates (> 12C) when submicrometer particle sizes are used for both the positive and negative electrode. In light of this and several life-related advantages possessed by the Li4+3xTi5O12 electrode, it is recommended for development as a high-power energy storage system. (c) 2006 The Electrochemical Society