RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Optimal stratification and allocation for the June agricultural survey
Lisic, J., Sang, H., Zhu, Z., & Zimmer, S. (2018). Optimal stratification and allocation for the June agricultural survey. Journal of Official Statistics, 34(1), 121-148. https://doi.org/10.1515/jos-2018-0007
A computational approach to optimal multivariate designs with respect to stratification and allocation is investigated under the assumptions of fixed total allocation, known number of strata, and the availability of administrative data correlated with the variables of interest under coefficient-of-variation constraints. This approach uses a penalized objective function that is optimized by simulated annealing through exchanging sampling units and sample allocations among strata. Computational speed is improved through the use of a computationally efficient machine learning method such as K-means to create an initial stratification close to the optimal stratification. The numeric stability of the algorithm has been investigated and parallel processing has been employed where appropriate. Results are presented for both simulated data and USDA's June Agricultural Survey. An R package has also been made available for evaluation.