RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Structure-activity relationships and plasma stability
Nguyen, T. T. H., Decker, A. M., Snyder, R. W., Tonetti, E. C., Gamage, T. F., & Zhang, Y. (2022). Neuropeptide B/W receptor 1 peptidomimetic agonists: Structure-activity relationships and plasma stability. European Journal of Medicinal Chemistry, 231, Article 114149. https://doi.org/10.1016/j.ejmech.2022.114149
Neuropeptides B and W (NPB and NPW) are endogenous ligands of the Neuropeptide B/W Receptor 1 (NPBWR1) which has been implicated in a wide range of functions including regulation of pain and energy homeostasis. There is currently little information on the structure-activity relationships (SAR) of these two neuropeptides. In a quest to develop stable and potent NPBWR1 peptidomimetic agonists, we performed systematic SAR by truncation, Alanine/Glycine and d-amino acid scans, and replacement with unnatural amino acids. Evaluation in the NPBWR1 calcium assay revealed that the C-terminal GRAAGLL and N-terminal WYK regions constitute the two-epitope pharmacophore for NPBWR1 agonism. Replacement of the N-terminal Trp with its desaminoTrp residue resulted in compound 30 which exhibited nanomolar potency comparable to the endogenous NPB at NPBWR1 (Calcium assay: EC50 = 8 nM vs. 13 nM, cAMP assay: 2.7 nM vs 3.5 nM) and enhanced metabolic stability against rat plasma (39.1 min vs. 11.9 min).