RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Hromadka, M., Collins, J. B., Reed, C., Han, L., Kolappa, K. K., Cairns, B. A., Andrady, T., & van Aalst, J. A. (2008). Nanofiber applications for burn care. Journal of Burn Care & Research, 29(5), 695-703. https://doi.org/10.1097/BCR.0b013e31818480c9
Nanotechnology is a growing field of manufactured materials with sizes less than 1 mu m, and it is particularly useful in the field of medicine because these applications replicate components of a cell's in vivo environment. Nanofibers, which mimic collagen fibrils in the extracellular matrix (ECM), can be created from a host of natural and synthetic compounds and have multiple properties that may be beneficial to burn wound care. These properties include a large surface-area-to-volume ratio, high porosity, improved cell adherence, proliferation and migration, and controlled in vivo degradation rates. The large surface area of nanofiber mats allows for increased interaction with compounds and provides a mechanism for sustained release of antibiotics, analgesics, or growth factors into burn wounds; high porosity allows diffusion of nutrients and waste. Improved cell function on these scaffolds will promote healing. Controlled degradation rates of these scaffolds will promote scaffold absorption after its function is no longer required. The objective of this article is to review the current literature describing nanofibers and their potential application to burn care.