RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
The Moments of the Number of Crossings of a Level by a Stationary Normal Process
Cramer, H., & Leadbetter, MR. (1965). The Moments of the Number of Crossings of a Level by a Stationary Normal Process. Annals of Mathematical Statistics, 36(6), 1656-1663.
In this paper we consider the number $N$ of upcrossings of a level $u$ by a stationary normal process $\xi(t)$ in $0 \leqq t \leqq T$. A formula is obtained for the factorial moment $M_k = \varepsilon\{N(N - 1) \cdots (N - k + 1)\}$ of any desired order $k$. The main condition assumed in the derivation is that $\xi(t)$ have, with probability one, a continuous sample derivative $\xi'(t)$ in the interval $\lbrack 0, T\rbrack$. This condition involves hardly any restriction since an example shows that even a slight relaxation of it causes all moments of order greater than one to become infinite. The moments of the number of downcrossings or total number of crossings can be obtained analogously