RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Modeling change in the presence of nonrandomly missing data
Evaluating a shared parameter mixture model
Gottfredson, N. C., Bauer, D. J., & Baldwin, S. A. (2014). Modeling change in the presence of nonrandomly missing data: Evaluating a shared parameter mixture model. Structural Equation Modeling-A Multidisciplinary Journal, 21(2), 196-209. https://doi.org/10.1080/10705511.2014.882666
In longitudinal research, interest often centers on individual trajectories of change over time. When there is missing data, a concern is whether data are systematically missing as a function of the individual trajectories. Such a missing data process, termed random coefficient-dependent missingness, is statistically nonignorable and can bias parameter estimates obtained from conventional growth models that assume missing data are missing at random. This article describes a shared parameter mixture model (SPMM) for testing the sensitivity of growth model parameter estimates to a random coefficient-dependent missingness mechanism. Simulations show that the SPMM recovers trajectory estimates as well as or better than a standard growth model across a range of missing data conditions. The article concludes with practical advice for longitudinal data analysts.