RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
This book concerns the error in data collected using sample surveys, the nature and magnitudes of the errors, their effects on survey estimates, how to model and estimate the errors using a variety of modeling methods, and, finally, how to interpret the estimates and make use of the results in reducing the error for future surveys. The book focuses on models that are appropriate for categorical data, although there are references to the differences and special problems that arise in the analysis and modeling of error for continuous data. Though the primary modeling method that is described is latent class analysis (LCA), a wide range of related models and applications are also discussed.