RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells
Detmar, M., Yeo, K. T., Nagy, J. A., Van de Water, L., Brown, L. F., Berse, B., Elicker, B. M., Ledbetter, S., & Dvorak, H. F. (1995). Keratinocyte-derived vascular permeability factor (vascular endothelial growth factor) is a potent mitogen for dermal microvascular endothelial cells. Journal of Investigative Dermatology, 105(1), 44-50. https://doi.org/10.1111/1523-1747.ep12312542
Expression of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) is markedly increased in the epidermis of lesional psoriatic skin and in healing skin wounds. In this study, we characterized the effects of several cytokines and growth factors on the expression and secretion of VPF/VEGF mRNA and protein by cultured human epidermal keratinocytes, as well as the effect of VPF/VEGF on the growth of cultured human dermal microvascular endothelial cells. Transforming growth factor-alpha, epidermal growth factor, and phorbol myristate acetate markedly stimulated VPF/VEGF mRNA expression by cultured keratinocytes; as in psoriatic skin, the three most common VPF/VEGF isoforms (encoding proteins of 121, 165, and 189 amino acids) were upregulated to an equal extent. Transforming growth factor (TGF)-alpha, epidermal growth factor, and phorbol myristate acetate also enhanced the secretion of VPF/VEGF by keratinocytes; in contrast, a number of other cytokines including interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor-alpha, interferon-gamma, and transforming growth factor-beta did not induce VPF/VEGF secretion. The VPF/VEGF secreted by keratinocytes was biologically active in that, like recombinant human VPF/VEGF, it potently stimulated dermal endothelial cell proliferation. Scatchard analysis revealed two high-affinity VPF/VEGF binding sites on dermal endothelial cells with dissociation constants of 51 pM and 2.9 pM. These results suggest that the avascular epidermis has the capacity to regulate dermal angiogenesis and microvascular permeability by a paracrine mechanism involving the secretion of VPF/VEGF. Similar mechanisms may be anticipated in a variety of inflammatory and neoplastic skin diseases characterized by microvascular hyperpermeability, edema, and angiogenesis.