RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Keeping up with changing source system terms in a local health information infrastructure
Running to stand still
Vreeman, D. J. (2007). Keeping up with changing source system terms in a local health information infrastructure: Running to stand still. Studies in Health Technology and Informatics, 129(Pt 1), 775-779. http://www.ncbi.nlm.nih.gov/pubmed/17911822
Keeping up with changes in source system terms in a local health information infrastructure requires substantial effort. I developed a program to assist us that returns candidate mappings based on string similarities between newly encountered source test names, existing source test names, and our master dictionary term names. I evaluated this program's performance in identifying correct mappings through a retrospective study of term mappings to our master dictionary from four radiology systems. For source terms created after the initial system integration, the semi-automated mapping program identified correct mappings for 76.3% of terms from all systems. Overall, the program correctly identified mappings for 45.6% of all terms by exact string match to an existing term. The program identified correct mappings for 36.9% of the terms without an exact string match by string comparison to existing source terms, and for 54.4% of the remaining unmapped terms by string comparison directly to master dictionary terms. Because managing vocabulary mappings is resource-intensive, accurate automated tools can help reduce the effort required for ongoing health information exchange among disparate systems.