RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Intracellular islatravir pharmacology differs between species in an in vitro model
Implications for preclinical study design
Sykes, C., Van Horne, B., Jones, J., Kashuba, A. D. M., Gatto, G., Van der Straten, A., Johnson, L., & Cottrell, M. L. (2022). Intracellular islatravir pharmacology differs between species in an in vitro model: Implications for preclinical study design. Journal of Antimicrobial Chemotherapy, 77(4), 1000-1004. https://doi.org/10.1093/jac/dkac015
BACKGROUND: Islatravir (4'-ethynyl-2-fluoro-2'-deoxyadenosine; EFdA) is a first-in-class nucleoside reverse transcriptase translocation inhibitor (NRTTI) being investigated for HIV treatment and prevention. EFdA is intracellularly phosphorylated to EFdA-triphosphate (EFdA-tp), a competitive substrate of deoxyadenosine-triphosphate (dATP). Thus, translating safety and efficacy findings from preclinical studies relies on the assumption that EFdA's intracellular pharmacology can be extrapolated across species.
OBJECTIVES: We investigated how EFdA is phosphorylated across animal species commonly used for preclinical models in drug development to identify those that most closely matched humans.
METHODS: PBMCs were isolated from whole blood of six species (human, rhesus macaque non-human primate (rmNHP), rat, minipig, dog, and rabbit) using Ficoll separation and counted on a haemocytometer by Trypan blue staining. One million live cells were cultured in media supplemented with 10 U/mL human IL-2, 10% FBS and 1% antibiotics and treated with 0, 17, 170, and 1700 nM EFdA (n = 3 replicates per concentration). After 24 h, representative cell counts were derived from untreated control wells (as above), cells were washed in PBS, and lysed with 70:30 methanol:water. EFdA-tp and dATP concentrations were quantified by HPLC-MS/MS and normalized to the representative live cell counts for each species.
RESULTS: When compared to human values, EFdA-tp concentrations for each EFdA treatment concentration were lower in all species (rmNHP 1.5-2.1-fold, rat 4.5-15-fold, minipig 37-71-fold, dog and rabbit >100-fold). Additionally, rmNHP and dog PBMCs exhibited significantly higher (7-10-fold; P < 0.001) dATP when compared with human PBMCs.
CONCLUSIONS: Given intracellular pharmacology differences, these preclinical models may be a conservative estimate of EFdA's intracellular pharmacokinetics and efficacy in humans.