RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Thin films derived from nanocrystal cores and functionalized linkers provide large surface-to-volume ratio and three-dimensional ligand framework. This paper describes the results of an investigation of the interfacial ion fluxes associated with redox reactivity and structural properties of such films using cyclic voltammetry, electrochemical quartz-crystal nanobalance, surface infrared reflection spectroscopy, and X-ray pbotoelectron spectroscopy. Films from gold nanocrystals of 2 nm core sizes and 11-mercaptoundecanoic acid were studied as a model system. First, the film coated on electrode surface displays redox-like voltammetric waves characteristic of the deprotonation-reprotonation of the carboxylic acid groups in the nanostructured network. This process is accompanied by mass changes. Secondly, the film exhibits capability for the complexation of copper ions via the nanostructured carboxylate framework. This process is also accompanied by interfacial fluxes of electrolyte cations across the electrode \film\ electrolyte interface which compensate electrostatically the fixed negative charges in the reduction process.