RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Insights into the genetic architecture of the human face
White, J. D., Indencleef, K., Naqvi, S., Eller, R. J., Hoskens, H., Roosenboom, J., Lee, M. K., Li, J., Mohammed, J., Richmond, S., Quillen, E. E., Norton, H. L., Feingold, E., Swigut, T., Marazita, M. L., Peeters, H., Hens, G., Shaffer, J. R., Wysocka, J., ... Claes, P. (2021). Insights into the genetic architecture of the human face. Nature Genetics, 53(1), 45-53. https://doi.org/10.1038/s41588-020-00741-7
The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are shaped by both individual and coordinated genetic actions.A multivariate genome-wide association study identifies 203 signals associated with facial variation. These signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues.