RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Heterochromatin protein 1, a known suppressor of position-effect variegation, is highly conserved in Drosophila
Clark, R. F., & Elgin, S. C. R. (1992). Heterochromatin protein 1, a known suppressor of position-effect variegation, is highly conserved in Drosophila. Nucleic Acids Research, 20(22), 6067-6074. https://doi.org/10.1093/nar/20.22.6067
The Su(var)205 gene of Drosophila melanogaster encodes heterochromatin protein 1 (HP1), a protein located preferentially within beta-heterochromatin. Mutation of this gene has been associated with dominant suppression of position-effect variegation. We have cloned and sequenced the gene encoding HP1 from Drosophila virilis, a distantly related species. Comparison of the predicted amino acid sequence with Drosophila melanogaster HP1 shows two regions of strong homology, one near the N-terminus (57/61 amino acids identical) and the other near the C-terminus (62/68 amino acids identical) of the protein. Little homology is seen in the 5' and 3' untranslated portions of the gene, as well as in the intronic sequences, although intron/exon boundaries are generally conserved. A comparison of the deduced amino acid sequences of HP1-like proteins from other species shows that the cores of the N-terminal and C-terminal domains have been conserved from insects to mammals. The high degree of conservation suggests that these N- and C-terminal domains could interact with other macromolecules in the formation of the condensed structure of heterochromatin.