RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Heroin type, injecting behavior, and HIV transmission
A simulation model of HIV incidence and prevalence
Bobashev, G. V., Mars, S., Murphy, N. R., Dreisbach, C. N., Zule, W. A., & Ciccarone, D. (2019). Heroin type, injecting behavior, and HIV transmission: A simulation model of HIV incidence and prevalence. PLoS One, 14(12), Article 0215042. https://doi.org/10.1371/journal.pone.0215042
BACKGROUND AND AIMS: Using mathematical modeling to illustrate and predict how different heroin source-forms: "black tar" (BTH) and powder heroin (PH) can affect HIV transmission in the context of contrasting injecting practices. By quantifying HIV risk by these two heroin source-types we show how each affects the incidence and prevalence of HIV over time. From 1997 to 2010 PH reaching the United States was manufactured overwhelmingly by Colombian suppliers and distributed in the eastern states of the United States. Recently Mexican cartels that supply the western U.S. states have started to produce PH too, replacing Colombian distribution to the east. This raises the possibility that BTH in the western U.S. may be replaced by PH in the future.
DESIGN: We used an agent-based model to evaluate the impact of use of different heroin formulations in high- and low-risk populations of persons who inject drugs (PWID) who use different types of syringes (high vs. low dead space) and injecting practices. We obtained model parameters from peer-reviewed publications and ethnographic research.
RESULTS: Heating of BTH, additional syringe rinsing, and subcutaneous injection can substantially decrease the risk of HIV transmission. Simulation analysis shows that HIV transmission risk may be strongly affected by the type of heroin used. We reproduced historic differences in HIV prevalence and incidence. The protective effect of BTH is much stronger in high-risk compared with low-risk populations. Simulation of future outbreaks show that when PH replaces BTH we expect a long-term overall increase in HIV prevalence. In a population of PWID with mixed low- and high-risk clusters we find that local HIV outbreaks can occur even when the overall prevalence and incidence are low. The results are dependent on evidence-supported assumptions.
CONCLUSIONS: The results support harm-reduction measures focused on a reduction in syringe sharing and promoting protective measures of syringe rinsing and drug solution heating.