RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects
Aschard, H., Hancock, D., London, SJ., & Kraft, P. (2011). Genome-wide meta-analysis of joint tests for genetic and gene-environment interaction effects. Human Heredity, 70(4), 292-300. https://doi.org/10.1159/000323318
Background: There is growing interest in the study of gene-environment interactions in the context of genome-wide association studies (GWASs). These studies will likely require meta-analytic approaches to have sufficient power. Methods: We describe an approach for meta-analysis of a joint test for genetic main effects and gene-environment interaction effects. Using simulation studies based on a meta-analysis of five studies (total n = 10,161), we compare the power of this test to the meta-analysis of marginal test of genetic association and the meta-analysis of standard 1 d.f. interaction tests across a broad range of genetic main effects and gene-environment interaction effects. Results: We show that the joint meta-analysis is valid and can be more powerful than classical meta-analytic approaches, with a potential gain of power over 50% compared to the marginal test. The standard interaction test had less than 1% power in almost all the situations we considered. We also show that regardless of the test used, sample sizes far exceeding those of a typical individual GWAS will be needed to reliably detect genes with subtle gene-environment interaction patterns. Conclusion: The joint meta-analysis is an attractive approach to discover markers which may have been missed by initial GWASs focusing on marginal marker-trait associations.