RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Flow-Through Porous-Electrode Model - Application to Metal-Ion Removal from Dilute Streams
Trainham, J., & Newman, J. (1977). Flow-Through Porous-Electrode Model - Application to Metal-Ion Removal from Dilute Streams. Journal of the Electrochemical Society, 124(10), 1528-1540. https://doi.org/10.1149/1.2133106
A one-dimensional model for flow-through porous electrodes operatingabove and below the limiting current of a metal deposition reaction has beendeveloped. The model assumes that there is one primary reactant species in anexcess of supporting electrolyte, and that a simultaneous side reaction mayoccur. The model predicts nonuniform reaction rates due to ohmic, mass-transfer,and heterogeneous kinetic limitations; the effects of axial diffusion anddispersion are included. Results are compared with the experimental data observedby various authors for the deposition of copper from sulfate solutionswith the simultaneous generation of dissolved hydrogen. Satisfactory agreementbetween model predictions and experimental data on over-all reactorperformance and deposit distributions has been accomplished. For an upstreamcounterelectrode, distributions of reaction rate (for both single andmultiple reactions), concentration, and potential describe the detailed systembehavior.