RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Field evaluation of diagnostic sensitivity (DSe) and specificity (DSp) of common tests for amoebic gill disease (AGD) and complex gill disease (CGD) in cultured Atlantic salmon (Salmo salar) in Scotland using Bayesian latent class models
Boerlage, A. S., Ashby, A., Eze, J., Gunn, G., & Reeves, A. (2022). Field evaluation of diagnostic sensitivity (DSe) and specificity (DSp) of common tests for amoebic gill disease (AGD) and complex gill disease (CGD) in cultured Atlantic salmon (Salmo salar) in Scotland using Bayesian latent class models. Preventive Veterinary Medicine, 204, Article 105654. https://doi.org/10.1016/j.prevetmed.2022.105654
Amoebic gill disease (AGD) and complex gill disease (CGD) are the most significant marine gill diseases in salmon aquaculture in Scotland. Little is published about diagnostic performance of tests to detect these diseases, making it difficult to interpret test results. We estimated diagnostic sensitivity (DSe) and specificity (DSp) of common tests for AGD (gross AGD score, qPCR for Neoparamoeba perurans, histopathology) and CGD (gross proliferative gill disease (PGD) score, gross total gill score, histopathology). Because specifications in our sampling protocol implemented to encourage consistency across the farms might affect diagnostic performance of histopathology (historically the reference standard for gill diseases), we used Bayesian latent class models without reference standard. Cases and non-cases were based on less, medium, and severe stringent case definitions, representing different cut-off levels for the different tests. Gross gill scores for both diseases were excellent in designating non-diseased fish, DSps were generally around 1. To detect CGD, DSe of gross total gill score and gross PGD score were between respectively 0.81 (0.73 – 0.91 lower to upper 95% credible interval) and 0.53 (0.46 – 0.64) for medium stringent case definitions, and to detect AGD the DSe for the gross AGD score was between 0.53 (0.48–0.57) and 0.14 (0.07 – 0.22) for respectively the less and severe stringent case definition. Thus, gross gill scores were medium to good in designating truly diseased fish, implying some false negatives are expected. For CGD the DSe for gross total gill scores were the highest, for AGD it was the qPCR test at a DSe of 0.92 (0.86 – 0.99). For both diseases, DSe was lowest for histopathology, e.g. 0.23 (0.16 – 0.30) for AGD and 0.1 (0.07 – 0.14) for CGD under medium stringent case definitions, perhaps due to collecting the second gill arch on the right rather than the worst affected arch, whilst PCR sampling and gross gill scoring included multiple (PCR) or all (gross scoring) gill arches. The diagnostic goals of these tests differ; gross gill scoring provides a low-cost presumptive diagnosis, PCR a non-lethal confirmation of the presence of a specific pathogen and histopathology provides information on the underlying aetiology of gill damage as well as the extent, severity, and chronology of gill disease. An effective gill health surveillance strategy is likely to incorporate multiple diagnostic tools used in a complementary manner.