RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Evaluation of the reinforcing strength of phendimetrazine using a progressive-ratio schedule of reinforcement in rhesus monkeys
Minkiewciz, M., Czoty, P. W., Blough, B. E., & Nader, M. A. (2020). Evaluation of the reinforcing strength of phendimetrazine using a progressive-ratio schedule of reinforcement in rhesus monkeys. The Journal of Pharmacology and Experimental Therapeutics, 374(1), 1-5. https://doi.org/10.1124/jpet.120.264952
Stimulant abuse is a persistent public health problem with no Food and Drug Administration-approved pharmacotherapy. Although monoamine-releasing drugs such as
d-amphetamine can decrease cocaine self-administration in human and animal laboratory studies, their potential for abuse limits clinical utility. "Abuse-deterrent" formulations of monoamine releasers, such as prodrugs, hold greater clinical promise if their abuse potential is, as theorized, lower than that of cocaine. In these studies, we determined the reinforcing strength of phendimetrazine (PDM), a prodrug for the amphetamine-like monoamine releaser phenmetrazine; both drugs have been shown to decrease cocaine self-administration in laboratory animals. To date, no study has directly compared PDM (Schedule III) with cocaine (Schedule II) under progressive-ratio (PR) schedules of reinforcement, which are better suited than fixed-ratio schedules to directly compare reinforcing strength of drugs. Dose-response curves for cocaine (saline, 0.001-0.3 mg/kg per injection) and PDM (0.1-1.0 mg/kg per injection) were generated in six cocaine-experienced male rhesus monkeys during 4-hour sessions with a 20-minute limited hold (LH). Under these conditions, the maximum number of injections was not significantly different between cocaine and PDM. The reinforcing strength of doses situated on the peaks of the cocaine and PDM dose-effect curves were redetermined with a 60-minute LH. The mean number of injections increased for both drugs, but not for saline. Cocaine presentations resulted in significantly higher peak injections than PDM with a 60-minute LH, which is consistent with the lower scheduling of PDM. These results support PDM as Schedule III and highlight the importance of schedule parameters when comparing reinforcing strength of drugs using a PR schedule of reinforcement. SIGNIFICANCE STATEMENT: One strategy for reducing cocaine use is to identify a treatment that substitutes for cocaine but has lower abuse potential. In a rhesus monkey model of drug abuse, this study compared the reinforcing strength of cocaine and phendimetrazine, a drug that has been shown to decrease cocaine use in some studies.