RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil
Mante, N. O., Butcher, TA., Wei, G., Trojanowski, R., & Sanchez, V. (2015). Evaluation of Biomass-Derived Distillate Fuel as Renewable Heating Oil. Energy & Fuels, 29(10), 6536-6543. https://doi.org/10.1021/acs.energyfuels.5b01751
The utilization of advanced biofuels in stationary applications, such as home heating, is considered as an early entry point for biomass-derived fuels into the distillate fuel market sector. Two renewable fuels produced by a biomass fluidized catalytic cracking (BFCC) process, followed by hydroprocessing and fractionation, were tested. The evaluation was performed on a pure (100%) distillate fraction, 50% blend of the distillate fraction with petroleum-based heating oil, and 20% blend of a heavier gas oil fraction. Combustion experiments were carried out in a transparent quartz chamber and a typical oil-fired residential boiler. The flame stability, size, and shape produced by the fuels were examined. The flue gas was analyzed for O-2, CO, NOx, and smoke. The elastomer compatibility test was performed with nitrile slabs at 43 degrees C for 1 month. Fuel stability was examined at 80 degrees C for 1 week. The results from the combustion studies suggest that the distillate fuel blends could be used as alternative fuels to No. 2 heating oil, even up to 100% without any operational issues. The distillate fuels were found to be stable. and the nitrile slab volume swell (similar to 10%) suggests that the fuel could be compatible to legacy elastomers.