RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Estimation of pyrethroid pesticide intake using regression modeling of food groups based on composite dietary samples
Michael, L., Brown, G. G., & Melnyk, L. J. (2016). Estimation of pyrethroid pesticide intake using regression modeling of food groups based on composite dietary samples. Journal of Environmental Science and Health, Part B, 51(11), 751-759. https://doi.org/10.1080/03601234.2016.1198640
Population-based estimates of pesticide intake are needed to characterize exposure for particular demographic groups based on their dietary behaviors. Regression modeling performed on measurements of selected pesticides in composited duplicate diet samples allowed (1) estimation of pesticide intakes for a defined demographic community, and (2) comparison of dietary pesticide intakes between the composite and individual samples. Extant databases were useful for assigning individual samples to composites, but they could not provide the breadth of information needed to facilitate measurable levels in every composite. Composite sample measurements were found to be good predictors of pyrethroid pesticide levels in their individual sample constituents where sufficient measurements are available above the method detection limit. Statistical inference shows little evidence of differences between individual and composite measurements and suggests that regression modeling of food groups based on composite dietary samples may provide an effective tool for estimating dietary pesticide intake for a defined population.