RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Dose effects on the excretion of urinary metabolites of 2-[1,2,methoxy-13C]methoxyethanol in rats and mice
Sumner, S., Stedman, DB., Cheng, SY., Welsch, F., & Fennell, T. (1995). Dose effects on the excretion of urinary metabolites of 2-[1,2,methoxy-13C]methoxyethanol in rats and mice. Toxicology and Applied Pharmacology, 134(1), 139-147. https://doi.org/10.1006/taap.1995.1177
The administration of 2-methoxyethanol (2-ME) to pregnant rats, mice, or primates results in developmental toxicity. To assess the role of metabolism in the adverse response of 2-ME, carbon-13 NMR spectroscopy was used to examine, directly in the urine, metabolites produced after administering high (250 mg/kg) and low (25 mg/kg) doses of 2-[1,2,methoxy-13C]ME to pregnant CD-1 mice and male Fischer 344 rats. The high dose elicits teratogenic effects in mice and testicular toxicity in rats. The urinary disposition was also examined after dosing pregnant CD-1 mice with a developmentally toxic level of 2-ME together with serine or acetate (known attenuators of 2-ME embryotoxicity). Seven novel metabolites were found in rat urine, consistent with those assigned in our previous studies with mice. Metabolite composition was compared for the different dosing regimens. A lower percentage of metabolites derived after conversion of 2-ME to 2-methoxyacetic acid (2-MAA) was found following concurrent administration of 2-ME with acetate, D-serine, or L-serine. These differences are mainly attributed to higher levels of ethylene glycol and/or glycolic acid that arise for the 2-ME administrations with any of the attenuators. Acetate together with 2-ME also reduced the percentage of metabolites incorporated into intermediary metabolism. These data indicate that attenuators of 2-ME teratogenic effects may alter metabolism and distribution by decreasing the conversion of 2-ME to 2-MAA, decreasing the conversion of 2-MAA to a coenzyme A thioester (2-methoxyacetyl ~ CoA), altering the utilization of the coenzyme A thioester, and/or increasing the conversion of 2-ME to ethylene glycol and its further metabolism. These changes in metabolism may contribute to the attenuating effects of these agents on 2-ME.