RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
The distributed model intercomparison project – Phase 2
Motivation and design of the Oklahoma experiments
Smith, M. B., Koren, V., Zhang, Z., Zhang, Y., Moreda, F. G., Cui, Z., Mizukami, N., Anderson, E. A., & Cosgrove, B. A. (2012). The distributed model intercomparison project – Phase 2: Motivation and design of the Oklahoma experiments. Journal of Hydrology, 418-419, 3-16. https://doi.org/10.1016/j.jhydrol.2011.08.055
The Office of Hydrologic Development (OHD) of the National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service (NWS) conducted the second phase of the Distributed Model Intercomparison Project (DMIP 2). After DMIP 1, the NWS recognized the need for additional science experiments to guide its research-to-operations path towards advanced hydrologic models for river and water resources forecasting. This was accentuated by the need to develop a broader spectrum of water resources forecasting products (such as soil moisture) in addition to the more traditional river, flash flood, and water supply forecasts. As it did for DMIP 1, the NWS sought the input and contributions from the hydrologic research community.
DMIP 1 showed that using operational precipitation data, some distributed models could indeed perform as well as lumped models in several basins and better than lumped models for one basin. However, in general, the improvements were more limited than anticipated by the scientific community. Models combining so-called conceptual rainfall-runoff mechanisms with physically-based routing schemes achieved the best overall performance. Clear gains were achieved through calibration of model parameters, with the average performance of calibrated models being better than uncalibrated models. DMIP 1 experiments were hampered by temporally-inconsistent precipitation data and few runoff events in the verification period for some basins. Greater uncertainty in modeling small basins was noted, pointing to the need for additional tests of nested basins of various sizes.