RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Differences in gait biomechanics between adolescents and young adults with anterior cruciate ligament reconstruction
Lisee, C. M., Bjornsen, E., Horton, W. Z., Davis-Wilson, H., Blackburn, J. T., Fisher, M. B., & Pietrosimone, B. (2022). Differences in gait biomechanics between adolescents and young adults with anterior cruciate ligament reconstruction. Journal of Athletic Training, 57(9-10), 921-928. https://doi.org/10.4085/1062-6050-0052.22
CONTEXT: Adolescents and adults are treated similarly in rehabilitation and research despite differences in clinical recovery after anterior cruciate ligament reconstruction (ACLR). Aberrant gait is a clinical outcome associated with poor long-term health post-ACLR but has not been compared between adolescents and adults.
OBJECTIVE: To compare gait biomechanical waveforms throughout stance between adolescents (<18 years old) and young adults (≥18 years old) post-ACLR.
DESIGN: Case-control study.
SETTING: Laboratory.
PATIENTS OR OTHER PARTICIPANTS: Adolescents (n = 13, girls = 77%, age = 16.7 ± 0.6 years, height = 1.7 ± 0.1 m, weight = 22.2 ± 3.7 kg/m2) were identified from a cross-sectional cohort assessing clinical outcomes 6 to 12 months post-ACLR. Young adults (n = 13, women = 77%, age = 22.3 ± 4.0 years, height = 1.7 ± 0.1 m, weight = 22.9 ± 3.3 kg/m2) were matched based on sex, time since surgery (±2 months), and body mass index (±3 kg/m2).
INTERVENTION(S): Participants performed 5 gait trials at their habitual speed.
MAIN OUTCOME MEASURE(S): Three-dimensional gait biomechanics and forces were collected. Vertical ground reaction force normalized to body weight (xBW), knee-flexion angle (°), knee-abduction moment (xBW × height), and knee-extension moment (BW × height) waveforms were calculated during the stance phase of gait (0%-100%). Habitual walking speed was compared using independent t tests. We used functional waveforms to compare gait biomechanics throughout stance with and without controlling for habitual walking speed by calculating mean differences between groups with 95% CIs.
RESULTS: Adolescents walked with slower habitual speeds compared with adults (adolescents = 1.1 ± 0.1 m/s, adults = 1.3 ± 0.1 m/s, P < .001). When gait speed was not controlled, adolescents walked with less vertical ground reaction force (9%-15% of stance) and knee-abduction moment (12%-25% of stance) during early stance and less knee-extension moment during late stance (80%-99% of stance). Regardless of their habitual walking speed, adolescents walked with greater knee-flexion angle throughout most stances (0%-21% and 29%-100% of stance).
CONCLUSIONS: Adolescents and adults demonstrated different gait patterns post-ACLR, suggesting that age may play a role in altered gait biomechanics.