RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
In this paper, upcrossings, downcrossings and tangencies to levels and curves are discussed within a general framework. The mean number of crossings of a level (or curve) is calculated for a wide class of processes and it is shown that tangencies have probability zero in these cases. This extends results of Ito [1] and Ylvisaker [7] for stationary normal processes, to nonstationary and non normal cases. In particular the corresponding result given by Leadbetter and Cryer [3] for normal, non stationary processes can be slightly improved to apply under minimal conditions. An application is also given for an important non normal process