RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Drug testing has become an accepted strategy for controlling drug use, particularly among individuals in the custody of the criminal justice system. Emphasis has been placed on testing those free in the community, either on pretrial release, probation, or parole. The drug-testing strategies applied to these populations-whom and how often to test-have evolved largely on an ad hoc basis. In this paper, we investigate optimal (cost-minimizing) drug-testing strategies as a means of achieving the efficient allocation of scarce resources to meet agency goals and objectives. We propose an analytic model based on individual decision theory and Bayesian acceptance sampling and apply the model to a hypothetical criminal justice population in which drug use is presumed to be highly prevalent