RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
A comparison of robust bayes and classical estimators for regional lake models of fish response to acidification
Reckhow, K. (1988). A comparison of robust bayes and classical estimators for regional lake models of fish response to acidification. Water Resources Research, 24(7), 1061-1068. https://doi.org/10.1029/WR024i007p01061
Empirical models of fish response to lake acidification were recently fit to a large historical data set from the Adirondack region of the United States using classical and Bayesian methods. The models may be used to predict species presence/absence for brook trout and lake trout as a function of acid-precipitation-related water chemistry, using a logistic function. To evaluate the effectiveness of the models in the prediction of presence/absence due to regional lake acidification, new data sets were used for cross validation of the candidate models. Based on this evaluation, the robust Bayes models, which are based on a compromise estimator between Bayes and empirical Bayes, were found to be the best predictors of species presence/absence in lakes.