RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Co-producing interdisciplinary knowledge and action for sustainable water governance
Lessons from the development of a water resources decision support system in Pernambuco, Brazil
White, D. D., Lawless, K. L., Vivoni, E. R., Mascaro, G., Pahle, R., Kumar, I., Coli, P., Castillo, R. M., Moreda, F., & Asfora, M. (2019). Co-producing interdisciplinary knowledge and action for sustainable water governance: Lessons from the development of a water resources decision support system in Pernambuco, Brazil. Global challenges (Hoboken, NJ), 3(4), Article 1800012. https://doi.org/10.1002/gch2.201800012
One of the most pressing global challenges for sustainable development is freshwater management. Sustainable water governance requires interdisciplinary knowledge about environmental and social processes as well as participatory strategies that bring scientists, managers, policymakers, and other stakeholders together to cooperatively produce knowledge and solutions, promote social learning, and build enduring institutional capacity. Cooperative production of knowledge and action is designed to enhance the likelihood that the findings, models, simulations, and decision support tools developed are scientifically credible, solutions-oriented, and relevant to management needs and stakeholders' perspectives. To explore how interdisciplinary science and sustainable water management can be co-developed in practice, the experiences of an international collaboration are drawn on to improve local capacity to manage existing and future water resources efficiently, sustainably, and equitably in the State of Pernambuco in northeastern Brazil. Systems are developed to model and simulate rainfall, reservoir management, and flood forecasting that allow users to create, save, and compare future scenarios. A web-enabled decision support system is also designed to integrate models to inform water management and climate adaptation. The challenges and lessons learned from this project, the transferability of this approach, and strategies for evaluating the impacts on management decisions and sustainability outcomes are discussed.