RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Calcium-dependent, swelling-activated K+ conductance in human neuroblastoma cells
Basavappa, S., Mangel, A. W., & Boulpaep, E. L. (2003). Calcium-dependent, swelling-activated K+ conductance in human neuroblastoma cells. Biochemical and Biophysical Research Communications, 308(4), 759-63.
In most mammalian cells, regulatory volume decrease (RVD) is mediated by swelling-activated Cl(-) and K(+) channels. Previous studies in the human neuroblastoma cell line CHP-100 have demonstrated that exposure to hypoosmotic solutions activates Cl(-) channels which are sensitive to Ca(2+). Whether a Ca(2+)-dependent K(+) conductance is activated after cell swelling was investigated in the present studies. Reducing the extracellular osmolarity from 290 to 190 mOsm/kg H(2)O rapidly activated 86Rb effluxes. Hypoosmotic stress also increased cytosolic Ca(2+) in fura-2 loaded cells. Pretreatment with 2.5 mM EGTA and nominally Ca(2+) free extracellular solution significantly decreased the hypoosmotically induced rise in cytosolic Ca(2+) and the swelling-activated 86Rb efflux. In cell-attached patch-clamp studies, decreasing the extracellular osmolarity activated a K(+) conductance that was blocked by Ba(2+). In addition, the swelling-activated K(+) channels were significantly inhibited in the presence of nominally free extracellular Ca(2+) and 2.5mM EGTA. These results suggest that in response to hypoosmotic stress, a Ca(2+)-dependent K(+) conductance is activated in the human neuroblastoma cell line CHP-100.