RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Cadmium modulates steatosis, fibrosis, and oncogenic signaling in liver cancer cells by activating notch and AKT/mTOR pathways
Niture, S., Gadi, S., Lin, M., Qi, Q., Niture, S. S., Moore, J. T., Bodnar, W., Fernando, R. A., Levine, K. E., & Kumar, D. (2023). Cadmium modulates steatosis, fibrosis, and oncogenic signaling in liver cancer cells by activating notch and AKT/mTOR pathways. Environmental Toxicology, 38(4), 783-797. https://doi.org/10.1002/tox.23731
Cadmium (Cd) is an environmental pollutant that increases hepatotoxicity and the risk of liver diseases. In the current study, we investigated the effect of a physiologically relevant, low concentration of Cd on the regulation of liver cancer cell proliferation, steatosis, and fibrogenic/oncogenic signaling. Exposure to low concentrations of Cd increased endogenous reactive oxygen species (ROS) production and enhanced cell proliferation in a human bipotent progenitor cell line HepaRG and hepatocellular carcinoma (HCC) cell lines. Acute exposure of Cd increased Jagged-1 expression and activated Notch signaling in HepaRG and HCC cells HepG2 and SK-Hep1. Cd activated AKT/mTOR signaling by increasing phosphorylation of AKT-S473 and mTOR-S-4448 residues. Moreover, a low concentration of Cd also promoted cell steatosis and induced fibrogenic signaling in HCC cells. Chronic exposure to low concentrations of Cd-activated Notch and AKT/mTOR signaling induced the expression of pro-inflammatory cytokines tumor necrosis factor-alpha (TNFα) and its downstream target TNF-α-Induced Protein 8 (TNFAIP8). RNA-Seq data revealed that chronic exposure to low concentrations of Cd modulated the expression of several fatty liver disease-related genes involved in cell steatosis/fibrosis in HepaRG and HepG2 cells. Collectively, our data suggest that low concentrations of Cd modulate steatosis along with fibrogenic and oncogenic signaling in HCC cells by activating Notch and AKT/mTOR pathways.