RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Nicotinic agonists display a wide-range profile of antinociceptive activity in acute, tonic, and chronic pain models. However, their effectiveness is limited by their unacceptable side effects. We investigated the antinociceptive effects of two new alpha4beta2* nicotinic partial agonists, varenicline and sazetidine-A, in acute thermal and tonic pain mouse models. Both drugs failed to induce significant effects in the tail-flick and hot-plate tests after subcutaneous administration. However, they blocked nicotine's effects in these tests at very low doses. In contrast to acute pain tests, varenicline and sazetidine-A dose-dependently induced an analgesic effect in the mouse formalin test after systemic administration. Their antinociceptive effects were mediated, however, by different nicotinic acetylcholine receptor (nAChR) subtypes. Sazetidine-A effects were mediated by beta2* nAChR subtypes, whereas varenicline actions were attributed to alpha3beta4 nAChRs. Moreover, low inactive doses of varenicline blocked nicotine's actions in phase II of the formalin test. Overall, our results suggest that the antagonistic actions of varenicline at low doses are mediated by beta2*-nAChRs and at higher doses as an agonist by alpha3beta4*-nAChRs. In contrast, both actions of sazetidine-A are mediated by beta2*-nAChR subtypes. These results suggest that nicotinic partial agonists possess analgesic effects in a rodent tonic pain model and may provide a potential treatment for the treatment of chronic pain disorders.