RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
18F-choline PET/mpMRI for detection of significant prostate cancer
Part 2. Cost-effectiveness analysis
Barnett, C., Davenport, M. S., Montgomery, J. S., Kunju, L. P., Denton, B., & Piert, M. (2019). 18F-choline PET/mpMRI for detection of significant prostate cancer: Part 2. Cost-effectiveness analysis. Journal of Nuclear Medicine, 60(12), 1705-1712. Advance online publication. https://doi.org/10.2967/jnumed.119.225771
The objective of this study was to evaluate the cost-effectiveness of
18F-choline PET/multiparametric MRI (mpMRI) versus mpMRI alone for the detection of primary prostate cancer with a Gleason score of greater than or equal to 3 + 4 in men with elevated prostate-specific antigen levels.
Methods: A Markov model of prostate cancer onset and progression was used to estimate the health and economic consequences of
18F-choline PET/mpMRI for the detection of primary prostate cancer with a Gleason score of greater than or equal to 3 + 4 in men with elevated prostate-specific antigen levels. Multiple simultaneous hybrid
18F-choline PET/mpMRI strategies were evaluated using Likert or Prostate Imaging Reporting and Data System version 2 (PI-RADSv2) scoring; the first was biopsy for Likert 5 mpMRI lesions or Likert 3-4 lesions with
18F-choline target-to-background ratios of greater than or equal to 1.58, and the second was biopsy for PI-RADSv2 5 mpMRI lesions or PI-RADSv2 3-4 mpMRI lesions with
18F-choline target-to-background ratios of greater than or equal to 1.58. These strategies were compared with universal standard biopsy, mpMRI alone with biopsy only for PI-RADSv2 3-5 lesions, and mpMRI alone with biopsy only for Likert 4-5 lesions. For each mpMRI strategy, either no biopsy or standard biopsy could be performed after negative mpMRI results were obtained. Deaths averted, quality-adjusted life years (QALYs), cost, and incremental cost-effectiveness ratios were estimated for each strategy.
Results: When the results of
18F-choline PET/mpMRI were negative, performing a standard biopsy was more expensive and had lower QALYs than performing no biopsy. The best screening strategy among those considered in this study performed hybrid
18F-choline PET/mpMRI with Likert scoring on men with elevated PSA, performed combined biopsy (targeted biopsy and standard 12-core biopsy) for men with positive imaging results, and no biopsy for men with negative imaging results ($22,706/QALY gained relative to mpMRI alone); this strategy reduced the number of biopsies by 35% in comparison to mpMRI alone. When the same policies were compared using PI-RADSv2 instead of Likert scoring, hybrid
18F-choline PET/mpMRI cost $46,867/QALY gained relative to mpMRI alone. In a threshold analysis, the best strategy among those considered remained cost-effective when the sensitivity and specificity of PET/mpMRI and combined biopsy (targeted biopsy and standard 12-core biopsy) were simultaneously reduced by 20 percentage points.
Conclusion:
18F-choline PET/mpMRI for the detection of primary prostate cancer with a Gleason score of greater than or equal to 3 + 4 is cost-effective and can reduce the number of unneeded biopsies in comparison to mpMRI alone.