RTI uses cookies to offer you the best experience online. By clicking “accept” on this website, you opt in and you agree to the use of cookies. If you would like to know more about how RTI uses cookies and how to manage them please view our Privacy Policy here. You can “opt out” or change your mind by visiting: http://optout.aboutads.info/. Click “accept” to agree.
Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources
Mortensen, N. P., Fennell, T. R., & Johnson, L. M. (2021). Unintended human ingestion of nanoplastics and small microplastics through drinking water, beverages, and food sources. NanoImpact, 21, Article 100302. https://doi.org/10.1016/j.impact.2021.100302
The potential risks on human health from the unintentional ingestion of microplastics (MPs) and nanoplastics (NPs) is an emerging concern. Despite the mounting awareness of small-scale plastics in drinking water, beverages, and food products, little is known about potential downstream effects on human health. Furthermore, very few studies currently exist that focus on NPs and smaller sized MPs, which may be more significant for human exposure given the higher likelihood of smaller-scale particles crossing the intestinal tract. Therefore, this review summarizes the smallest NPs and MPs (NMPs) reported in the literature, focusing on a threshold size range of <50 ?m detected in drinking water, beverages, and food (e.g., table salt, seafood). We show that the smallest NMPs reported currently in the literature overwhelmingly originate from drinking water, with prevalent polymer compositions including polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET). We further describe NMPs in food products and show that most studies focus on larger size ranges (e.g., <100 ?m or 5?250 ?m), thereby supporting the need for continued investigations to understand the breadth of contaminants in human ingestion. We cover the current methodologies for sample preparation, size characterization, and polymer identification and further discuss the potential impact of these approaches on the findings and current knowledge of NMPs. This review aims to provide a groundwork to support next steps towards better understanding the oral ingestion of NMPs and the potential impact on human health.